Proceedings of IAM, V.4, N.1, 2015, pp.51-57

UNIFIED COMMON FIXED POINT THEOREM IN
2- METRIC SPACES

Naveen Gulati?, Vishal Gupta?, Ravinder Kumar?, Seema Devi®

1S.D. (P.G) College, Ambala Cantt, Haryana, India
2Department of Mathematics, M. M. University, Mullana, Ambala, Haryana, India
3B.P.R. College, Sector-5, Kurukshetra University, Kurukshetra, Haryana, India
e-mail: naveengulatimaths@gmail.com, vishal.gmn@gmail.com,
ravindarkharyl0@gmail.com, deviseemal679@gmail.com

Abstract. The purpose of this paper is to prove some common fixed point theorems for
four self maps in complete 2-metric spaces by employing the notion of weakly compatible
mappings. Our results extend and generalize the results of Iseki (Fixed point theorems in 2-
metric spaces, Math Seminar Notes, Kobe Uni. 3, 1975, 133 - 136) and several other
authors.
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1. Introduction

Fixed point theory has many applications, including variational and linear
inequalities, optimization, approximation theory and minimum norm problem.
Banach [1] proved the famous and well known Banach contraction principle
concerning the fixed point of contraction mappings defined on a complete metric
space. This theorem has been generalized and extended by many authors (see: [7,

8]).
In 1963, Gahler [5] introduced the generalization of metric space and called it
2-metric space. Let X be a set consisting at least three points. 2-metric on X is a

function p: X x X x X — IR" which satisfies the following conditions:
1. To each pair of points a,be X with a=Db, there exists a point ce X
such that p(a,b,c) #0;
2. p(a,b,c)=0, when at least two of points are equal;
3. p(a,b,c)=p(b,c,a)=p(c,a,Db),va,b,ceX
4. p(a,b,c) < p(a,b,d)+ p(a,d,c)+ p(d,b,c),Va,b,c,d e X .
Here the 2 metric p(X, Y, z) represents the area of triangle spanned by X, y, z
Examples of 2-metric space are:
Example 1. [5] A circle in the Euclidean space RZis a 2-metric space.
Example 2. [5] Define d on R"xR"xR" as
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d(xy,z)= min{|x—y|,|y—z|,|z—x|}.

Fixed Point Theory in 2-metric space has been proved initially by Iseki [9].
After that several authors ([12, 19, 22]) proved fixed point results in the setting of
2-metric space.

In 1979, Fisher [4] gave common fixed point using commuting mapping.
Jungck [10] and Kubiak [15] also prove some results using commuting and semi-
commuting mapping.

In 1992, Murthy [17] used compatible type mapping to prove fixed point
results which is more general than commuting and semi-commuting maps.

After that in 1978, Khan [13] proved a result by taking a uniformly convergent
sequence of 2-metrics in X .

In 1977, Fisher [3] proved the following result in metric space:

Theorem 1. [3] Let f be a self map on compete metric space (X,p) such that

7 (% fy)<ap(x, %) p(y, fy)-Bo(x, fy) p(y, i), ¥X,ye X and for
some nonnegative constants «, f witha <1. Then f has a fixed point in X .
Moreover, if further <1, then f has a unique fixed pointin X .

Naidu and Prasad [18] in 1986 generalize the result of [3] in 2-metric space.

Further, in 1989, Bijendra [2] introduced the concept of semi-compatibility in
2-metric space and prove some fixed point results which improves the results of
Kang et al. [12]. Also, Gupta et al. [21], [20] proved a result by using the concept
of weak compatibility and property a. Gupta [6] in 2012, proved fixed point results
using A-contraction in the setting of 2-metric space.

In 2011, Mehta et al. [16] proved fixed point result using weakly contractive
condition and contractive modulus property in the setting of metric space. Also in
2014, Gupta et al. [11] showed result employing the same property in complete
metric space.

In this paper, we prove a common fixed point result for four mappings by
using weakly compatible property and contractive modulus.

2.  Preliminaries

Definition 1. [9] A sequence {Xn} said to be a Cauchy sequence in 2-metric space
X, if for each aeXthere existsnyeX lim . d(x,x,a)=0,

vn,mz2n,.
Definition 2. [9] A sequence {y } in 2-metric space X is convergent to an
n

element xe X ifforeach aeX, lim_, d(x,,xa)=0.

Definition 3. [9] A complete 2-metric space is one in which every Cauchy
sequence in X converges to an element of X .
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Definition 4. [4] Let A and S be self mappings on a 2-metric space then, A and
S are said to be weakly compatible if they commute at their coincidence point. i.e.
If Ax=Sx for some X € X, then ASx = SAX.

Definition-5. [18] Two self maps f and g of a 2-metric space (X,d) are called

compatible if lim,__ d(fgx,, gfx,,a)=0 whenever {X,} isa sequence in X
such that lim fx, = limgx =t forsomete X .
nN—o0

nN—o0

Definition-6. [18] Two self maps f and g of a 2-metric space (X,d) are called

non compatible if 3 at least one sequence {X,} such that lim fx. = limgx =t for
nN—o nN—o0

somete X . But lim,__d(fgx,,gfx,,a) is either non zero or non — existent.
Definition-7. [4] Two self maps f and g are said to be commuting if
fgx =gfx ¥xe X .

Definition-8. [4]Let f and g be two self maps onaset X ,if fx=gx Vxe X,
then X is called coincidence point of f andg .

Definition-9. [16] A function ¢ :[0,o0) — [0, 0)is said to be contractive modulus
if p(t)<t,fort>0

3. Mainresult

Theorem 2. Let F,G,S and T be four self mappings on 2-metric space (X,d)
satisfying the following conditions:

1. The pair (F,S) and (G, T) are weakly compatible,

2. F(X)cT(X)and G(X) < S(X) are closed subset of X,

3. d(Fx,Gy,t) <g[min{d (Sx, Ty, 1), d (FX, Sx,t),d(Gy, Ty,t),d (Fx, Ty, t),d (Sx, Gy, )},
where ¢ is a contractive modulus.

Then the maps F,G,S and T have a unique common fixed point in X .

Proof. Let {yn} be a sequence in X suchthat y, =FXx, =TX

andy,,, =GX,,; =SX,,,,by (3)

d(Yy Yo 1) =d(FX;, G, 1)

<gmin{d(Sx,,TX,,,,t),d(Fx,, SX,,t),d(GX,.,, TX, ;,t),d(FX,,TX, ,,t),d(Sx,,CX,,;,1)
<gmin{d (Y, 1, Yo, 1):d(¥ns Yos DA (Voaas Yo 0,d (Ve Yoo ), A (Yoo Yo D3
<gmindd (Y, 4, Yo 1), d(Yn Yo DI < AA (Y, Yoias V]

Thus d(Y,, Yp.1:t) <4d(Yn, Y D]

n+1? n+11
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But ¢ is a contractive module therefore g[d(y. .y, ,,t)]<d(y,,y,,,,t) and this is
possible only if limd(y,,y,,.t)=0.

Now we show that {y,} is a Cauchy sequence in X . If not 3 ¢>0 such that
m<n<N,d(y,,Y..t)>¢, but d(y, ., Y..t)<eande<d(y,,y,,t) =
d(Fx,,Gx,,t)

<gmin{d(Sx,,,Tx,,t),d(Fx.,, Sx,,t),d(Gx,,Tx,,t),d (Fx,,TX,,t),d(SX,,,Gx,,t)}]

< gmindd (Y, 1, Y, 1,0, (Y, Yo 10,0 (V1 Vo1, A Yo Voo, A (Vs Vi D
<g[min{e,&,0,¢,£}], This gives & < ¢(e).

But ¢ is a contractive module therefore ¢(g) <&, from this one can get € <&, this
is a contradiction, hence {yn} is a Cauchy sequence. Since X is complete

therefore there exists a point zin X such that limy, =z, this gives,

n—oo

limGx, =1limSx, =z =limFx, = limT .Since F(X)cT(X), 3 a point a e X st.

z=Ta.

If z+Ge, using (3) we get d(Ge,z,t) =d(Ga, Fx, ,t)

<gmin{d(Sx,, Ta,t),d(Fx,, SX,,1),d(Ge, T, t),d(FX,, T a,t),d(SX,,Ga,t)
<g[min{d(z,z,t),d(z,z,1),d(Ge, z,1),d(z,2,1),d(z,Ga,t) < g d(Ca, z,1)].

This implies d(Ge, z,t) <g[d(Ga, z,1)].But ¢ is a contractive modulus, this gives
Ad(Ga,z,1)] <d(Ge, z,t), this is a contradiction. ThusGa =z=Ta.

Thus, « isa co-incidence pointof G and T and (G,T) is weakly compatible,
we get, GTa =TGa =Gz=Tz. Now G(X)c S(X) therefore there exists a
point we X st. Sw=z ifFw= z.

Using (3), d(Fw, z,t) = d (G, Fw,1)

< gmin{d (Sw, T a,t),d (Fw, Sw,t),d (G, T o, 1), d (Fw, T, t), d (Sw, Gex, t)
<glmin{d(z, z,t),d(Fw, z,t),d(z, z,t),d (Fw, z,t),d(z, z,t) <g[d(Fw, z,1)],

this gives d(Fw, z,t) < g[d(Fw, z,1)].

But ¢ is a contractive modulus therefore ¢[d(Fz,z,t)]<d(Fz,z,t)this is a
contradiction.

So Fw=2z=3w, hencew is a co-incidence point of FandS. Since (F,S) is
weakly compatible therefore FSw = SFw = Fz = Sz.

Now if Fz =z then by using (3) we can get,

d(Fz,z,t)=d(Fz,Ga,t)

< g[min{d(Sz,T,t),d(Fz,Sz,1),d(Ge, Tx,t),d(Fz, T, t),d(Sz, G, 1) }]

< g[min{d(Sz, z,t),d(Fz, Sz,t),d(z, z,t),d(z, z,t),d(Sz, z,t)}].

54



N. GULATI et.al.:UNIFIED COMMON FIXED POINT ...

Since Fz = Sz, therefore d (Fz, z,t) < g[d(Fz,z,t)]. Also ¢ is a contractive
modulus. Thus¢[d(Fz,z,t)]<d(Fz,z,t).This is a contradiction. Hence
Fz =Sz =z.Now ifGz#z then by using (3), we get
d(z,Gz,t) =d(Fz,Gz,t)

< g[min{d (Sz,Tz,t),d(Fz, Sz,t),d(Gz,Tz,t),d(Fz,Tz,t),d (Sz,Gz,1)}]

< g[min{d(z,Tz,t),d(z, z,t),d(Gz,Tz,t),d(z,Tz,t),d(z,Gz,t)}].

And Gz=Tz=d(z,Gz,t)<g[d(z,Gz,t)] and¢ is a contractive modulus,
therefore ¢[d(z,Gz,t)] <d(z,Gz,t), which is a contradiction. S0Gz =z =Tz,
hence we have Gz=Tz=Fz=Sz=1z.

Hence F,S,T,G have a common fixed point in X .

Now we prove uniqueness.

Let there be another point say W s.t. W=z, then by (3)

d(Fz,Gw,t) < g[min{d(Sz,Tw,t),d(Fz, Sz,t),d(Gw, Tw,t),d(Fz,Tw,t),d(Sz,Gw, t)}]
d(z,w,t) <g[min{d(z,w,t),d(z, z,t),d(w, w,t),d(z,w,t),d(z, w,1)}]

=d(z,w,t) <g[d(z,w,1)]

Since, ¢ is a contractive modulus, we get = ¢[d(z,w,t)] <d(z,w,t), which is a
contradiction.

Therefore fixed points are unique. This proves the Theorem 2.1.

Corollary 1.Let F,G,S and T be four self mappings of a 2-metric space (X,d)

satisfying the following conditions:

1. The pairs(F,S)and (G,T) are weakly compatible.

2. limFx, =limSx, =1limGy, =limTy, =z forsome z in X

3. d(Fx,Gy,t) <g[min{d(Sx, Ty,t),d(Fx, Sx,t),d (Gy, Ty, t),d (Fx, Ty,t),d (Sx, Gy, ) }],
where ¢ is a contractive modulus. Then the maps F,G,S and T have a unique

common fixed point in X .
Proof. Using condition (2), since lim Fx, = limSx, =limGy, =limTy_ =z for some

nN—o0 n—oo

zin X sincelimTy, =z then there exists a pointa € X st. Z=Ta,refers this to

n—oo

the proof of theorem 3.1, we have corollary 1.
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2-0lciilii metrik fozalarda torpanmaz noqta haqqinda
vahid iimumi teorem

Navin Gulati, Visal Gupta, Ravinder Kumar, Sima Devi
XULASO

Bu isin mogsadi 2 6l¢iilii metrik fozalarda zoif uyusan inikas anlayisindan istifado
etmoklo, 4 ayr1 misal ii¢iin torpanmoz ndqto haqqinda bazi teoremlorin isbat edilmosidir. Bu
nazticalor Iseki vo digor bozi miislliflorin noticalorini genislondirir vo timumilogdirir.

Acar sézlor: torponmoz ndqto, 2 Olciilii metrik fozalar, zoif uygunluq, sixilan
modullar

Enunasi 001as TeopeMa 0 HENMOJABUKHOM TOUKe B 2-MEePHOM
METPUYECKOM MPOCTPAHCTBE

Hoaeun I'yinatu, Buman I'ynra, Papungep Kymap, Cuma JleBn
PE3IOME

Llenpto maHHOM paboOTHI SIBJIsSETCA [OKa3aThb HEKOTOpPbIE OOIIME TEOPEMBI O
HETIOABIKHON TOYKE I YEThIPEX CaMOCTOSATENbHBIX IPUMEPOB B 2-MEPHOM METPUIECKOM
MPOCTPAHCTBE C HCIOJIB30BAaHUEM IMOHATHE cIab0 COBMECTUMBIX OTOOpakeHmil. Hamm
Pe3yabTaThl PACIIUPSIIOT 1 060061matoT pe3ynbrars! 1SeKi i psiga mpyrux aBTOpoB.

KiaroueBble ciioBa: HEMOABW)KHAS TOYKA, 2-MEPHOE METPHUYECKOE IPOCTPAHCTBO,
CJ1a00 COBMECTHMOCTD, CKUMAFOIIIE MOJIYIIH.
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